

BUDDHA SERIES (Unit Wise Solved Question & Answers)

Course – B.Sc. Botany 3rd year (5th semester)

College – Buddha Degree College

(DDU Code-859)

Department: Science

Subject: Molecular Biology & Bioinformatics

Faculty Name: Dr. Satya Prakash Singh

Unit 1

- $1 \square \square$ Who first isolated nuclein (now known as DNA) from pus cells?
 - a) Watson
 - b) Crick
 - c) Miescher □
 - d) Griffith
- 2□□ Which scientist discovered the "transforming principle" in bacteria?
 - a) Hershey
 - b) Avery
 - c) Griffith □
 - d) Chargaff
- 3 □ □ Avery, MacLeod, and McCarty demonstrated that the transforming principle is:
 - a) Protein
 - b) DNA □
 - c) RNA
 - d) Lipid
- $4 \square \square$ The Hershey-Chase experiment used which organism to prove DNA is genetic material?
 - a) E. coli bacterium infected by
 T2 phage □
 - b) Streptococcus pneumoniae
 - c) Drosophila

- d) Yeast
- 5□□ In the Hershey-Chase experiment, phosphorus-32 labeled:
 - a) Protein coat
 - b) DNA □
 - c) RNA
 - d) Carbohydrates
- $6\square\square$ The classic double helix model of DNA was proposed by:
 - a) Griffith and Avery
 - b) Hershey and Chase
 - c) Watson and Crick □
 - · d) Meselson and Stahl

DNA Structure & Types

- $7 \square \square$ Which of the following is true about B-DNA?
 - a) Left-handed helix
 - b) 10 base pairs per turn □
 - c) 20 Å diameter
 - d) Contains uracil
- $8 \square \square$ Z-DNA is characterized by:
 - a) Right-handed helix
 - b) Left-handed helix □

- c) Single-stranded structure
- d) Presence of thymine dimers

 $9 \square \square$ A-form DNA is most common under:

- a) High humidity
- b) Dehydrated conditions □
- c) Neutral pH
- d) High salt

The diameter of B-DNA helix is:

- a) 10 Å
- b) 20 Å □
- c) 30 Å
- d) 40 Å

 $1 \square \square 1 \square \square$ Which base pairing is correct in DNA?

- a) A-C
- b) G-A
- c) A-T □
- d) G-U

Types of Genetic Material

1 □ □ 2 □ □ RNA can act as genetic material in:

- a) All bacteria
- b) Retroviruses □
- c) All plants

• d) All fungi

 $1 \square \square 3 \square \square$ Which of the following is not a type of DNA?

- a) B-DNA
- b) Z-DNA
- c) D-DNA □
- d) A-DNA

 $1 \square \square 4 \square \square$ In eukaryotes, the main genetic material is found in:

- a) Cytoplasm
- b) Mitochondria only
- c) Nucleus □
- d) Ribosomes

 $1 \square \square 5 \square \square$ In prokaryotes, DNA is:

- a) Linear and present in nucleus
- b) Circular and without histones□
- c) Double stranded and in membrane-bound nucleus
- d) RNA-based

DNA Replication: General & Prokaryotes

 $1 \square \square 6 \square \square$ DNA replication is called semiconservative because:

• a) Both strands are new

• b) One strand is old and one is b) 8 new □ c) Y c) It uses RNA primer only d) Linear ladder • d) It needs no enzymes DNA Replication: Eukaryotes & **Advanced Concepts** 1 □ □ 7 □ □ Meselson and Stahl proved the semi-conservative nature of DNA using: $2 \square \square 1 \square \square$ In eukaryotes, replication is: a) 15N and 14N labeling □ a) Unidirectional b) Radioactive sulfur b) Bidirectional • c) X-ray diffraction c) Conservative • d) Autoradiography d) Starts at one origin $1 \square \square 8 \square \square$ In prokaryotes, replication $2 \square \square 2 \square \square$ The lagging strand is begins at: synthesized in: • a) Multiple origins a) Continuous manner b) One origin \square b) Discontinuous manner • c) Telomeres c) Without RNA primer • d) Any random point d) From 5' to 5' $1 \square \square 9 \square \square$ Which enzyme synthesizes $2 \square \square 3 \square \square$ Short DNA fragments on RNA primers? lagging strand are called: • a) DNA polymerase I a) Franklin fragments b) DNA polymerase III b) Okazaki fragments c) Primase 🛭 c) Hershey fragments d) Ligase d) Z-DNA pieces $2 \square \square 0 \square \square$ In bacteria, the shape of $2\square \square 4\square \square$ DNA polymerase needs a: replicating DNA resembles:

a) ϕ (theta) \Box

• a) Free 3' OH group □

b) Free 5' phosphate

- c) Free amino group
- d) Free methyl group

 $2 \square \square 5 \square \square$ Which enzyme removes RNA primers in prokaryotes?

- a) DNA ligase
- b) DNA polymerase I □
- c) DNA polymerase III
- d) Helicase

 $2\square\square 6\square\square$ DNA ligase function is to:

- a) Unwind DNA
- b) Join Okazaki fragments □
- c) Add RNA primers
- d) Synthesize leading strand

 $2 \square \square 7 \square \square$ In eukaryotes, replication of the linear chromosome's 5' end is solved by:

- a) Enhancers
- b) Telomerase □
- c) Topoisomerase
- d) Ligase

 $2 \square \square \square \square$ The function of singlestranded binding proteins (SSB) is:

- a) Remove supercoils
- b) Stabilize unwound DNA □
- c) Remove primers

• d) Join fragments

 $2 \square \square 9 \square \square$ DNA replication in eukaryotes involves:

- a) One DNA polymerase only
- b) Many DNA polymerases □
- c) No proofreading
- d) No helicase

 $3 \square \square 0 \square \square$ Which of the following is a correct feature of DNA replication?

- a) RNA primer not required
- b) Continuous synthesis on both strands
- c) Semi-discontinuous synthesis
- d) $3' \rightarrow 5'$ synthesis

☐ Answers Summary

No. Answer

- 1 c
- 2 c
- 3 b
- 1.
- 5 b
- 6 c
- 7 b
- 8 b

No. Answer

- 9 b
- 10 b
- 11 c
- 12 b
- 13 c
- 14 c
- 15 b
- 16 b
- 17 a
- 18 b
- 19 c

No. Answer

- 20 a
- 21 b
- 22 b
- 23 b
- 24 a
- 25 b
- 26 b
- 27 b
- 28 b
- 29 b
- 30 c

Unit 2

$1 \square \square$ Which of the following serves as a
template during transcription?

- a) Coding strand
- b) Non-coding strand □
- c) Both strands
- d) mRNA

 $2 \square \square$ In prokaryotes, transcription occurs in:

- a) Nucleus
- b) Cytoplasm □
- c) Mitochondria
- d) Ribosomes

 $3 \square \square$ RNA polymerase in prokaryotes consists of how many subunits in the core enzyme?

- a) Two
- b) Three
- c) Four □
- d) Five

 $4\square\square$ The sigma (σ) factor in prokaryotic RNA polymerase is important for:

- a) Chain elongation
- b) Termination
- c) Promoter recognition □
- d) Proofreading

 $5\square\square$ In eukaryotes, RNA polymerase II transcribes:

- a) rRNA
- b) tRNA
- c) mRNA □
- d) 5S rRNA

 $6 \square \square$ Which RNA has a cloverleaf structure?

- a) mRNA
- b) tRNA □
- c) rRNA
- d) snRNA

7 □ The 5' cap of mRNA in eukaryotes is:

- a) Poly-A tail
- b) Methyl guanosine triphosphate □
- c) Acetyl group
- d) Thymidine

 $8 \square \square$ Which of the following RNAs has an anticodon loop?

- a) mRNA
- b) tRNA □
- c) rRNA

• d) snRNA	$1 \square \square 3 \square \square$ Which of the following is true about the genetic code?
9□□ Ribosomal RNA (rRNA) is mainly	 a) Overlapping
involved in:	• b) Ambiguous
• a) Coding information	c) Universal □
• b) Catalytic role in ribosome □	• d) Non-degenerate
• c) Carrying amino acids	
• d) Splicing	$1\Box\Box4\Box\Box$ In prokaryotes, the first amino acid incorporated is:
Prokaryotic mRNA is usually:	• a) Methionine
a) Monocistronic	• b) Formylmethionine □
b) Polycistronic □	• c) Glycine
c) Always capped	• d) Alanine
 d) Always spliced 	
	$1 \square \square 5 \square \square$ Peptidyl transferase activity is present in:
1□□1□□ The start codon for translation in most organisms is:	• a) tRNA
• a) UGA	• b) mRNA
• b) UAA	• c) rRNA □
• c) AUG □	• d) DNA
• d) UAG	1□□6□□ In eukaryotes, translation
	starts in the:
1□□2□□ A set of three nucleotides on mRNA is called:	• a) Nucleus
a) Anticodon	 b) Cytoplasm □
• b) Codon □	• c) Mitochondria only
• c) Exon	• d) Golgi apparatus
• d) Intron	

2□□1□□ The regulatory gene in lac operon is:	
• a) lacZ	
• b) lacY	
• c) lacA	
• d) lacI □	
2□□2□□ In absence of lactose, lac operon is: • a) On • b) Off □ • c) Continuously active • d) Overexpressed	
	 2□□3□□ The inducer molecule in lac operon is: a) Allolactose □ b) Glucose c) Fructose d) Lactose directly
	 2□□4□□ The operator region of lac operon is the binding site for: a) RNA polymerase b) Repressor □ c) Activator d) Inducer

 $2 \square \square 5 \square \square$ CAP-cAMP complex helps lac operon activation when:

- a) Glucose is high
- b) Glucose is low □
- c) Lactose is absent
- d) Lactose is high and glucose is high

2 □ □6 □ □ Eukaryotic gene regulation mainly involves:

- a) Operons
- b) Chromatin remodeling □
- c) Sigma factors
- d) Polycistronic mRNA

 $2 \square \square 7 \square \square$ DNA methylation generally causes:

- a) Activation of gene expression
- b) Repression of gene expression
- c) Increased mRNA stability
- d) Enhanced translation

 $2\square \square 8\square \square$ Histone acetylation leads to:

- a) Gene silencing
- b) Gene activation □
- c) DNA methylation
- d) RNA interference

 $2\square\square9\square\square$ Enhancers in eukaryotes are:

- a) Promoter regions
- b) Silencer elements
- c) Distal regulatory elements that increase transcription □
- d) Non-coding introns

 $3 \square \square 0 \square \square$ Alternative splicing in eukaryotes leads to:

- a) One protein from one gene only
- b) Multiple proteins from the same gene □
- c) Stop of transcription
- d) Increased mRNA degradation

□ Answers Summary

1 b 2 b 3 c 4 c

5 c 6 b 7 b 8 b

9 b 10 b 11 c 12 b

13 c 14 b 15 c 16 b

17 b 18 c 19 c 20 c

21 d 22 b 23 a 24 b

25 b 26 b 27 b 28 b

29 c 30 b